
N ASA T ECH N I CA L N OT E ^I^Q^ NASA TN D-4622

-0 -~--_^^ t-’^^^ a
’S3- UJ---

1^1
<t

LOAN COPY: RE^^ To

AFWHW1--2^
KRTLANO AFB. N MEX

MOTION OF AN ARTIFICIAL SATELLITE
UNDER COMBINED INFLUENCE OF
PLANAR AND KEPLERIAN FORCE FIELDS

by Rowland E. Burns

George C Marshall Space Flight Center ;
Huntsville, Ala.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. JULY 1968

J



TECH LIBRARY KAFB, NM

H1111111111111111111111111 IIIU 11111111III III l i Illlll M
0131753

MOTION OF AN ARTIFICIAL SATELLITE UNDER

COMBINED INFLUENCE OF PLANAR AND

KEPLERIAN FORCE FIELDS

By Rowland E. Burns

George C. Marshall Space Flight Center
Huntsville, Ala.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sole by the Clearinghouse for Federal Scientific and Technical Information
Springfield, Virginia 22151 CFSTI price $3.00





TABLE OF CONTENTS

Page

INTRODUCTION 1

FORMULATION OF PROBLEM 2

TRANSFORMATION OF COORDINATES AND THE HAMILTON-
JACOBI EQUATION 3

SEPARATION OF HAMILTON-JACOBI EQUATION:
SOLUTION OF PROBLEM 5

IDENTIFICATION OF CONSTANTS IN TERMS OF INITIAL
CONDITIONS 10

INTEGRATION OF EQUATIONS OF TWO-DIMENSIONAL MOTION 12

NUMERICAL RESULTS 22

CONCLUSIONS 53

APPENDIX. FURTHER CONSIDERATIONS OF SEPARATION
CONSTANT /3 54

REFERENCES 57

iii

L



LI ST OF ILLUSTRATIONS

Figure Title Page

1. Zo +/- 1, A 0 Cartesian Coordinates 25

2. ZQ +/- 1, A 0 Parabolic Coordinates 26

3. ZQ 1, A 0. 001 Cartesian Coordinates 27

4. ZQ 1, A 0. 001 Parabolic Coordinates 28

5. Zo 1, A 0. 01 Cartesian Coordinates 29

6. Zo 1, A 0. 01 Parabolic Coordinates 30

7. ZQ 1, A 0. 04 Cartesian Coordinates 31

8. ZQ 1, A 0. 04 Parabolic Coordinates 32

9. ZQ 1, A 0. 05 Cartesian Coordinates 33

10. ZQ 1, A 0. 05 Parabolic Coordinates 34

11. ZQ 1, A 0. 06 Cartesian Coordinates 35

12. ZQ 1, A 0. 06 Parabolic Coordinates 36

13. ZQ 1, A 0. 08 Cartesian Coordinates 37

14. ZQ 1, A 0. 08 Parabolic Coordinates 38

15. ZQ 1, A 0. 1 Cartesian Coordinates 39

16. ZQ 1, A 0. 1 Parabolic Coordinates 40

17. ZQ -1, A 0. 01 Cartesian Coordinates 41

18. ZQ -I, A 0. 01 Parabolic Coordinates 42

iv



LI ST OF ILLUSTRATIONS (Concluded)
Figure Title Page

19. Zo -1, A 0. 04 Cartesian Coordinates 43

20. T.O -1, A 0. 04 Parabolic Coordinates 44

21. 7.Q -1, A 0. 05 Cartesian Coordinates 45

22. Zo -I, A 0. 05 Parabolic Coordinates 46

23. Zo -I, A 0. 06 Cartesian Coordinates 47

24. Zo -I, A 0. 06 Parabolic Coordinates 48

25. ZQ -1, A =0. 08 Cartesian Coordinates 49

26. 7.Q -1, A =0. 08 Parabolic Coordinates 50

27. ZQ -I, A 0. 1 Cartesian Coordinates 51

28. ZQ 1, A 0. 01 Parabolic Coordinates 52

v



DEFIN ITION OF SYMBOLS

Symbol Definition

A Constant measuring force of planar field

a^2, ag2 Larger roots of P(Q and P(T? ), respectively

bi2, bg2 Smaller roots of P(^ and P(-n) respectively

GI, GZ, 03 Integration constants used in solution of Hamilton-

Jacobi equation

E Separation constant in Hamilton-Jacobi equation

E When used with arguments, denotes an elliptic

integral of the second kind

e Denotes eccentricity of an unperturbed Keplerian

orbit

F Constant measuring force of planar field; F mA

f Any continuous function of ^
g Any continuous function of rj

H Hamilton!an

II, 12,13,14 Integrals defined by equations (69) (71) (74) and

(76)

KI, KZ Parameters in elliptic integrals associated,

respectively, with ^ and T].

1^ Vectorial angular momentum in an unperturbed

Keplerian orbit
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DEFIN ITION OF SYMBOLS (Continued)

Symbol Definition

L Magnitude of angular momentum in an unperturbed
Keplerian orbit

1 Separation constant in the Hamilton-Jacobi equation

m Mass of satellite

P(^) Denotes polynomial in ^: specifically, as used, a

quadratic polynomial

P(r]) Denotes polynomial in 17: specifically, as used, a

quadratic polynomial

p. Denotes any of the momenta p p p defined by
1

equations 12) ( 13) and 14) s 77 <p

q. Denotes any of the momenta conjugate to P P and

p^

r Radius vector from primary to satellite

r Magnitude of radius vector from primary to satellite

S Jacob! substitution function

Si, Sg Components of S which are functions only of ^ and rj,

respectively

t Time, a parameter

U Potential function

u Dummy variable used in evaluation of Ii, 14;
different substitutions are used for each integral
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DEFIN ITION OF SYMBOLS (Continued)

Symbol Definition

\V Laplace integration constant for unperturbed two-body
problem

W Magnitude of integration constant for unperturbed
two-body problem

W Function related to S by equation (24)

x,y,z Cartesian coordinates describing motion of satellite

x,y Dummy variables

f3 Separation constant in Hamilton-Jacobi equation

T] One of three parabolic coordinates, f] r z

0 Polar angle in spherical coordinates

IJL Gravitational parameter of attracting primary

^ One of three parabolic coordinates ^ r + z

p Projection of radius vector in (x, y) plane

(f> Angular coordinate from arbitrary zero point in

(x, y) plane

^ Angle between Laplace vector integration constant and

the radius vector
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DEFIN ITION OF SYMBOLS (Concluded)

Symbol Definition

Subscripts

i Dummy subscript or summation variable

0 Indicates initial point

x,y,z Indicates Cartesian component of a vector

Other Notation

Indicates derivative with respect to time

Indicates a scalar product

x Indicates a vector product
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MOTION OF AN ARTI FIC IAL SATELLITE UNDER
COMBINED INFLUENCE OF PLANAR AND

KEPLER IAN FORCE FIELDS

NTRODUCTION

The development of the technology of artificial earth satellites has
posed mathematical problems which heretofore were academic. One such
problem is the radiation pressure perturbations of satellites with large area-
to-mass ratios (i. e. Echo) The standard method of treatment of such a
problem is a perturbational analysis of a purely Keplerian orbit which is dis-
turbed by a radiation pressure field.

It will be shown in this report that a generalized form of the two-body
problem which more closely approximates the radiation pressure problem can
be solved in closed form. Specifically, the problem of the motion of a satellite
under the combined influence of Keplerian and planar force fields will be
solved in terms of the elliptic functions.

The assumption of a planar force field is still an approximation to the
true radiation pressure problem’’’ because the divergence of the field is
neglected. It is obvious that neglecting the divergence of the radiation pressure
field is far less restrictive than disregarding the entire field. Perturbational
treatment with the present solution as a model should converge far more
readily than treatments which assume an initially Keplerian model.

* The treatment here has equal application to the case of the classical Stark
effect; that is, the radiation from hydrogen gas in an external planar electric
field is (classically) analogous to the radiation pressure problem. See
E. Schrodinger, Ann. Physik, 80, 457, 1926, and P. S. Epstein, Phys. Rev.
28, 695, 1926.



The solution may be outlined as follows. The equation of motion in

Cartesian coordinates is used to formulate the Hamilton-Jacobi equation of the

problem. This equation is then rewritten in terms of parabolic coordinates

and separated by means of the usual product of independent functions assumption.*

The solution is effected by quadratures of the separated equations in the three-

dimensional case. These quadratures are explicitly integrated for the case of

two-dimensional motion, which is initially circular. A graphical presentation

of the results is given.

FORMULATION OF PROBLEM

The equations of motion of a satellite under the combined influence of

an inverse square field and a uniform planar field are

^x___
x "(x^ + z2)3/2

Aty
y (x2 + y2 + z.2)3^

and
J"z

Z ~,--0---o --9^/9 + A
(x^+ y’ + z2)"’

where x,y,z are Cartesian coordinates, ;u the gravitational parameter of the

attracting center, and A the planar force-to-mass ratio. The force may be

derived from a potential U defined by

U= U(x.y,z,A) -m ( (^2 + y?+ ^1/2 + Az^)
The problem may now be stated as follows. Determine functional

relationships which relate x,y, and z to the time, initial conditions, and param-

eters ^ and A. This procedure is quite difficult, if not impossible, in Cartesian

coordinates. For this reason, we change from Cartesian coordinates to

parabolic coordinates.

v
The separation of the Hamilton-Jacob! equation in these coordinates is

suggested in Reference 1. It should be noted that the problem of a planar field

superimposed on an inverse square field is a special case of Euler’s problem

of two fixed centers. See Euler, Mem. de Berlin, 1760, p. 228.
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TRANSFORMATION OF COORD INATES AND THE
HAMI LTON-JACOB EQUATION

This potential may be rewritten in cylindrical coordinates as

U U(p, 0,z) ’^ mAz ( 1)

^/7Tz2-

where

x p cos 0
y p sin 0

and n\z z (2)

The Lagrangian yielding the basic set of differential equations may be
written as

L ^ (p2 + p2 02 4- z2) + -m^ + mAz
(p’ + z2) 2

3)

^ (p^ p^ + z2) U(p, 0, zr

The Lagrangian is now transformed to parabolic coordinates ^, ri,(t>.
This will ultimately allow a separation of the Hamilton-Jacob! equation

p ’^Tn (4)

^^ 5)
and

0 0 (6)

The radius vector in spherical coordinates, r, is given by

r ^Tz^ i?- (7)

* The inclusion of m as a multiplicative factor on A is, of course, unnecessary.
It simply turns out to be algebraically convenient. It can be removed in sub-
sequent equations by setting A F/m if desired.

3



Thus,
(8)

p i^-L^l
2\r^rT

and
z l-lu

2 9)

so that

L "T^ (f + f) + "^ ’^"0) ( 1())

Defining the momenta conjugate to ^, TJ, (p as

8 L
^’i ^

li)

(where q. is of any of ^, TI, or 0 and p. is any of p p or p ,),we find that

m(f+n)
P^ ^^ ^ 12J

p -m^2)- , 13)

^ 4T?
and

p -m ^ri cf) 14)

so that
4 ^ pe ---^- 15)s m(^+77)

47} p
r, ---L 16)

m(^+77)
and

i -^ 17)
m ^

Now

LU. r,. <^, p^) -^^- (^ P^ + , p^)

" ^r "^- "’ *’ ( 18)

4



The Hamiltonian, H, is defined by
3

H

^ q^ L(q.p) ^^ UP^P^ ^^i

+ U(^7),0) 19)

We now define a function S such that

V t ^

^ t <2"

and QO

^ i "y

The solutions to the original problem now must be solutions to the
Hamilton-Jacob! equation

2 r /8^2 /^^’’l i /as \2,
m(M [U-ar) + ^) J +

2m ^- W
+ u^’r1’ (t))

+ ^ (23)

SEPARAT ION OF HAM LTON-JACOB EQUATION:
SOLUTION OF PROBLEM

We shall attempt to find a solution to equation (23) in the form

SU,7L ^,t) W(^,77,^) Et (24)

where E is a constant. Then

5



2 r /aw\2 /aw\ 2 _J_ / 8W \2--
m(iT,) |f ^r) + T? U + 2m^^ + u(^^ E

(25)

It is not necessary, as yet, to specify the exact form of U( ^ ,17,0)
Assume, more generally, that

UU.1,0) ^.f"" tW

where f(^) and g(7}) are simply well-behaved functions of their arguments which

allow the integrals to exist. Inserting (26) into (25) and setting

W 1<^) + Si(^) + 82(7?) (27)

gives

_^ \ /asi)2 ^ , (J^ V ^
_^_

^
-f^U-AL E (28)

m(^+T?) V a^ / \Qri 2 m ^ ^+T?

Multiplying (28) by m{^+r]) and rearranging gives

2, (-^)2-. mf(,) m E , . -^ -2, (^)2 m g(,)

I2+ m ET] (29)
2rj

By the usual argument employed at this state in the solution of a partial

differential equation, we note that the left side of (29) depends only upon ^while the right side depends only upon ri. Since ^ and rj are independent coordi-

nates, we can move ^ through an arbitrary sequence of values while 77 is constant,
then reverse the process. But the equality given by (29) must be retained so

that both sides must be equal to a constant.

6



We, thus, have

(ricAz i2

2^ ^
+ m i(^ m E ^ + 97 ^ (30)

a^ z^
and

/ dS?\2 I2
271 (--) + m g(7?) m E77 + ;3 (31)

aif ^ii

Equations (30) and (31) integrate to yield

^ I^E _^_ mfQ;) _l2_
sl -’ J 2

+
2^ 2^ 4^2 d^ (32)

^0
and

S, / /^ ^- ^^7^7^, (33)2 J M 2 2ri 2r] 4ri2
^0

Inserting (32) and (33) into (27) and the resultant equation into (24) gives

S(,.,,,,t) 1, Et . / 7^ ^ ^ ^ di
^0

^ /jnJE Ji_ ms(T?) _l^

^ ^ 2 2T7 2T, 4772 dr7 U4}

^0

We now specialize f(^) and g(7) by writing equation 1) in the form

/ mA^_\ mA^\
-m^ , -2m^ mA(f-r,) V-^ 2 ^^ 2 ^^T^

mAZ

^ 2 ^ ri

(35)

7



Comparison of equations (26) and (35) shows that

f(^) m^ -m^2 (36)

and

g(r?) m^ + Jn^12 (37)

so that (34) becomes

S(S,,,,,t) 1, Et . / J^ . (^ . m^ ^ d,
^0

, ," /jn E, (__^) ^aT _2, d, (38)
J ^ 2 2n 4 471"
^?0

The arbitrary constants in this equation are 1, E, and /3. Following the

normal procedures of Hamilton-Jacobi mechanics, we now equate the partial

derivatives of S with respect to 1 or E or ? to additional constants yielding the

three equations

c, -t . ^ / ^ ^
^o V+m2A^3-^ 2mE^2 + 2(/3+m2^)^ I2

+ Jn- (rl r] dr?
2

T?o ^-m^T]3 + 2mETi2 + 2(m2in-/3) T) I2 (39)

c, ;’ d^--------.

^0 ^/-^m2A^3 + 2mE^2 + 2(^+m2^) ^ I2

r77------^-
^-----------------

rio ^J- m2Ar]3 + 2mEt72 + 2(m2^-^)T? I2 (40)

8



and

1 ( ^ <4
C3 0 ^- ^.f s-

^0 W+ m2 A^3 + 2mE^ + 2(;8 + m2^) 4 I2

- / 7 ^_ __)
Tlo ^-n^ATi3 + 2mET?2 + 2(m2 iJ.-{3)r] I2 ( (41)

Choosing ^ ^o-, 17 =.’’?<>, we find that c^ is the initial time tg. Similarly, 03
vanishes because we initialize motion at a possible orbital point (^o,f]o).
Finally, 03 is the initial value of 0. Equation (39) can then be regarded as
the relation maintained between ^ and 77 throughout the motion. If this equation
is solved to yield 77 T](^), we have the projection of the motion in the ^-T) plane.
Then equation (41) is the full three-dimensional description of the spatial motion

which relates (f> to ^ and T]. Elimination of r] (or ^) via equation (40) would yield
(f>{^) (or (f> (n)) Finally, equation 39) predicts values of the parameter t for
known values of ^ and 17. We can thus obtain values for any three members of
the set {^,r), <p,t} once any one of the four is specified.

It should be noted that, in a computational sense, we can obtain answers
much more easily if a value of ^ or 77 is originally specified rather than a value
of 0 or t. This observation is not apparent from the material developed thus
far but will be indicated by a special case to be treated in detail below. It
arises because of the difficulty of inverting the transcendental expressions which
result from the integration of the quadratures appearing in equations (39) and
(41)

We would expect equation (39) to be complicated because time is usually
difficult to treat in celestial mechanics problems. Equation (41) relates all
three spatial parameters and, for this reason, may be expected to be more
cumbersome than a relationship between two spatial parameters, equation (40)

The next problem of interest is the physical identification of the constants,
1, E, and /3.

9

I



DENTIFICATION OF CONSTANTS IN TERMS OF
N ITIAL COND ITIONS

The constant E, first introduced in equation (24) can be most easily

identified in Cartesian coordinates. Since we have

x \1 ^f] cos (j) v42^

y ^17 sin (f) (43)

and

z JL-1 (44)

^
equation (25) becomes

E ^) [^^^ limi^2 4- ^ ’^

n^) (i^ + JiL)^ J"^ 4- UU,r^)

J" (x2 + y2 + z2) m^ mAz (45)
2 ^xV+z2

Notice that the first two terms following that last equality in equation (45) represent

the energy in an unperturbed two-body problem.

For the identification of 1 we turn to equations (22) (24) and (27) to

find that

p 1 m^ <46)

^

10



Applying equations (42) and (43) gives

1 va{x2 + y2)^ m(xy yx) (47)

so that 1 is simply a component of angular momentum.

The constant /3 requires more work for its identification. Note that from
equations (20) and (21)

2 f^s Y J"E (/3+m^) m^ J2
p^ \ Q^ 2 2^ 4 4^2 <40}

and

., 2 pS\2 J"E + (-^m2^) m’AT? J2

^ l 8T,/ 2 271 4 4T72 V49)

so that

p 2- p 2 A- /A+/-21\ + "l!^ (J^ ) ^^ ^^"17 p^ 2 \ ^ 2 ^ ^ 4

JL ^-i^l!^
4 \ ^ (50)

Solving for /? gives

(i + i^t- ^ -,2) + ^ (i^-)- ^- ^!2tiiL (51)

This appears much less elegant than the expressions derived for E and 1
so that a further comment is in order. In Appendix A it is shown that {S is a

modification of one component of Laplace’s vectorial integration constant.

11



We have .now arrived at such a point in the development that no further
progress can be made without specializing the general results derived thus
far. This is because the integrated forms of equations (39) (40) and (41)
cannot be obtained until such time as certain restrictions on the magnitude of A
and the initial conditions are spelled out. For any given set of such conditions,
the integration can proceed but the conditions must be given.

To illustrate the procedure, we turn our attention to the special case
of two-dimensional motion with initially circular orbit conditions.

NTEGRATION OF EQUAT IONS OF
TWO-D IMENS IONAL MOTION

The choice of initial coordinates was made in such a way that the planar
force acts in the direction of increasing z. We can then expect that if motion
is to occur in a plane, this plane must include the z axis. It is algebraically
simplest to define the plane of two-dimensional motion to be the x-z plane.

This, however, is simply a convenience. If such a choice is made, then the

coordinate (f) is identically zero. If (f) 0, then certainly (f> 0, and equation

(46) shows that 1 0. Using this condition, equations (39) and (40) become

^ ^
_m ^ _______^I d^
2

^ ^m^3 + 2mE^ + 2(/3+m2^u)

+ ^ f ^ d7? (52)
i7o \/-m2A7]2 + 2mE7) + 2(m2^-/3)

and

^ ^
^0 "JiTi m^2 + 2mE^ + 2(/3+m2^)]

;", (53)
r,Q ^Iri [-m^2 + 2vaEr] + 2(va2^J^-|3)]

12
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To simplify the algebra, we now make use of the fact that the choice of
units for mass, time, and length are at our disposal. Choose these units in

such a way that

m 1

j" 1

ro 1 (54)

Having made this choice of units, we further choose initial conditions which
ensure an (initially) circular orbit of radius rg. Then

XQ 1

yo o

zo o

Xo 0 (55)

yo o

ZQ +/-1

where a subscript of zero indicates an initial condition. Using these conditions
in equations (45) and (51)*, we find

E -L-
2

_A_
2 (56)

First, convert initial conditions to ^o>^o coordinates.

13



Using equations (54) and 56) the polynomials appearing in the
denominator of equations 52) and (53) may be written as

P(^) m^2 + 2mE^ + 2(/3+m2^) A^2 ^ + 2(1 )
^

A (ai ^) (bi ^) (57)

and

( A \
P( 77) -m^At]2 + 2mE?7 + 2( m2^-/?) AT?2 77 + 2 1 + )

A(az ri) Ibzl + Ti) (58)

where a.^, b^ and a^, b^ are the roots of P(^) and P(^), respectively.

Equations (52) and (53) may now be written as

t t^ -4 /- ^ . / ^"dT?---- (59)

f ^o ^(ai ^ (b^ ^) T?o ^(az 7,) fbz + T?)

and

/ d^ / d7? (60)
^o ^^(ai 0 (bi ^) T?o ^T? (a2 77) bz + 77)

We now examine the possible singularities of the integrands of the last

two equations. The integrals will exist only under certain restrictions, and a

detailed examination is in order. The equations which define cylindrical
coordinates in terms of ^ and 17, equations (3) and (4) give

^ z +/- ^x^ y^ z2
and

77 =-z +/- ’7X2 + y2 + z2

14



Either ^ <: 0 and rj < 0 or ^ s: o and T} s 0 as may be seen from equation

(3) Choose, for convenience,

^ z + "Vx2 + y2 + z2

and

T) =-z + \/x2 + y2 + z2 (61)

Now, ^ 0 if x y z 0 or if x y 0 and z < 0. Similarly, T} will vanish for
x y z 0 or x y=- 0 and z > 0. This gives ^ s 0 and 17 == 0 which establishes

a lower bound on ^ and 17.

Label the roots of P( ^) in equation (57) in such a way that a^ ^ b^. With

this convention we can now establish upper bounds on both ^ and 17. To do this,
we notice that from equations (30) (31) (57) and (58) we have

( ^ (T)2-^
) < ^ ^

Using the non-negativity property of ^ and T),we may conclude that

p(0 ^ 0 (63)
and

F(r?) S O (64)

so that

^ ai

or

^ bi

15



indicating a forbidden range of ^ values. That is, we may expect that the

region

ai < ^ < bi (65)

is forbidden.

Similarly, the non-negativity of ~P(ri) ensures that

n < az

We have thus established the bounds on ^ and T] as

O ^ ^ ai (66)

and

0 < T] ^ ag (67)

It is now apparent that equations (59) and (60) may possess singularities

in the integrand. This means that these integrals might necessarily be regarded
as improper (Riemann) integrals, however, and the existence of these integrals

may be established by standard techniques of elementary calculus.

Next, we shall consider the problem of bounds on A. Let ^;; and T]* be

roots of P(^) and P(TJ). Then

p(^;c) A^ 2

^ + 2 (1 A)
\ z/

and

P( rT) -A^2- ^ + 2 (l + f)
Then ^* ^* (A) T]* ^*(A) Specifically,

16



1 . 7l 8A (l ^)
____________________________________________’_______________-"

s 2A
and \-

1 +/- ’7l + 8A 1 + -)
__________v____2 /

7)’" ------^A-------

It is not necessary to require that ^^ and 17* be real. The integrands, how-
ever, change character if we allow imaginary values of the roots. For con-
venience, therefore, we require that ^* and 17* be real. Now T)* is real for
A s 0. The. values of ^* will be imaginary if

\f~3 ^/3~
1 -^ < A < 1 + ^-

Thus, we bound A within the limits

0 A 1 -i- (68)
^

For reasons of orientation, we include the following table.

A a^ bi a^ b^

J-T
1 3. 73 3. 73 1. 73 -9. 19

^
0. 1 2. 55 7. 45 1. 78 -11. 83

0. 01 2. 03 97. 97 1. 97 -101. 97

0. 001 2. 005 998 2. 00 -1002

0. 0001 2. 000 9995 2. 00 -10002

(Note t>2 < 0 for all allowable values of A. )

17



To reiterate the results of this section to this point, we now have

established the inequalities

0 == ^ ^ ai

0 -= T) < ag
and ^3-

0 A ^ 1 ^-
In equation (60) we set

1, / d^ (69)

^o ^^(ai ^) (bi ^)

When we introduce a dummy variable u defined by

^ BI sn^

with the elliptic parameter K given by

^ -^b!
equation (69) becomes 3]

^ ^ [^ {Jt ^} --1^ ^ w

Define

I, / dr1 (71)
T?O ^i?(a2 77) |b2(+ 17)

Set

77 agcn^

18



with

^2 B2
&2 + Ibgl

Then, 3]

l2 --2-- cn-{^ /--a1-,)
^T7b,T L w a^ ^2 -Mb2l /

/ /-- /--a,--\
cn-^ ,/-2L / 2 ) (72)

\ ’7 ag N 82 + 1121 /

Substituting equations (70) and (72) into equation (60) gives the

equation of the orbit:

1 -l ( IJL HL\ i( P^ 1^~\\

^ _sn Wa^. ^- sn UT, JYJ\

---1---- cn-l ( 1^~ /^- cn-^ /c?--)^ (73)
J-^h^ W ag ’s/ az + lbzl/ \\’a2 N/az+ lbz l/

a-2 "2 1-

Notice that we may not remove the elliptic functions in equation (60) by application

of the operators sn or en due to the multiplicative factors which occur. If

/ bi happens to be rational, this manipulation could be accomplished, if

^a2 + fbzl

desired.

Notice that neither transformation used in the derivation of equation (73)
possesses a singularity. Equation (73) is a general solution valid for all

^ and 77.

19



Next, set

l3 / ^ d^ (74)

Ho ^(ai 0 (bi ^
Setting

^ al sn2u

and

K2 -a-1K
b,

we obtain 3]

I, 2^b, Ssn- (,/^../F)- sn-l( /i^./|^ )\^ai ^ b^ N a v b^ /

/ FT’ / ^- \ f aT’E sn-1 ’s/-, ^T^ ^ -r’
\ ai bi / bi

. E [sn-^^, ^), ^^ (75)

Finally, set

l4 / ^dT’ (76)

-Ho \f{az 11) Ibzl + T^r

Setting

17 az en2!!

and

^2 ^az + bg
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yields [3]

I, -2^-a,T7b;| ^ E [cn-( ^. ^^ ) ^?^,J
^ r -i f /-170- / ^ ^ / ^ ^J l^" W ag ^ aa + lbgl /, ^ag + lbzl /J (77)

l^ [cn-l f /^- 1^ } cn-^ /a:- F^--} (
a2 + [^[ [^ Waz ^a2 + |b2| / cn

^az ^ + Ib^ I

Substituting equations (75) and (77) into equation (59) yields

n- ^ -l / /L~ /^l" ^ -li IST F^\t to ^b-l -^n
l

^ J-^- ^ sn 1^ ^ ;

_E sn-l ( fr, /Jr\ /aT\ J ^ fIo-. /an, /|T)1 I
\^ ai ^ bi / ’s/ bi ^ V^ ai rs/ bi / ^7 b^ /J I

\ / 1~ /"n^ \ an

^ az + Ib^
}
E cn-l ( /JL, / a2 /-----,2 - \\/a2 \/a2 + bz ’s/a2 + Ibzl

p r -l ^ /_!I / BZ ^ / B2
cn W ag ’va2 + ibg ’s/a2 + Ibgj

|b2| [" / S" / a2 \ / ^ / az \ f

^ + Ib^l [cn W az ^ + [b^l / cn [J ^ ^ + 1^1 /_ ( (78)

A comparison of equations (73) and (78) indicates that the problem of

solving equation (73) for ^ or 17 is simpler than solving equation (78) for ^ or T}.

It would thus be easier to write equations of the form

t t(Q

21



or
t t(?7)

than to write

^ ^(t)

or

77 T)(t)

The difficulty with specification of ^ or 77 and, subsequently, solving

for t is that we must choose a value of ^ or 77 which exists for some value of t.

In other words, only those values of ^ and 77 which actually constitute a point

on the orbit will yield a value of t.

NUMER ICAL RESULTS

The preceding theory has dealt at some length with the solution of a

seemingly trivial modification of the Kepler problem. This problem is defined

by solution of the following differential equations.

___^___ (79)x (x^ y^ z2)3/2

- -^ (80)y (x^ + z2)3/2

V -^ + A (81)z (x^ + z2)8/2 + A

The results of a separation of variables of the last three equations is

given by equations (39) (40) and (41) For the special case of two-dimensional

motion, which is initially a circular orbit, and A restricted to the range

O . A . l ^the separated equations were integrated analytically.
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The results obtained are fairly complicated, and it is worthwhile to obtain
a graphical form of the solution. These graphical results are presented in this

section.

The following graphs were prepared by integration of equations (79)
(80) and (81) * For illustrative purposes a two-dimensional case was taken
with initial conditions given by equation 55) The values of A were chosen to
give a representative set of orbits. Values of A were

A {0, 0. 001, 0. 01, 0. 04, 0. 05, 0. 06, 0. 08, 0. 1}

For every value except the first two, two values of z (namely +1 and -1) were

chosen. Furthermore, in every case, the results are plotted in both x-z and

^-77 coordinate systems.

The first set of graphs. Figures 1 and 2, is shown for the case of A 0.
In x-y coordinates, the result is a circle but in ^--q coordinates the result is a

straight line. This illustrates the fact that results are strikingly different in

the two-coordinate system.

The second set of results. Figures 3 and 4, has an A value of 0. 001.
The computer was stopped at an arbitrary point in the integration because of
excessive running times (approximately 30 minutes on a SDS 930 computer
utilizing a Cal Comp plotter) The obvious characteristic of Figure 3 is that
the orbit is shifting in the direction of -x, even though the planar force field is
acting in the direction of +z. This condition illustrates the gyroscopic effect of
orbital motion that is usually less apparent. In Figure 4, as in all other cases,
the motion is limited by the roots of the polynomial, as was shown in equations
(66) and (67)

A second important point in connection with the numerical integration is
illustrated by Figures 5 and 6, for example. The motion, in general, tends

*The reason for numerically integrating these equations instead of using equa-
tions (73) and (78) was that existing numerical tables for elliptic functions are
quite inadequate. A serious study of the behavior of the orbits under discussion
would require series generation of the inverse elliptic functions. The above
theory was checked by comparison of numerical integration of equations 52) and
( 53) with numerical integration of equations (79) and (81) (planar case) Equa-
tions (73) and (78) were analytically differentiated to establish their validity.
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to spiral the point mass toward the attracting center. The integration step size

was reduced as the particle approached the center of attraction. The integration

was terminated when the constants E or /3 changed value across an integration

step. (E was found to be more sensitive than (3 to such changes.) A careful

examination of the behavior of the motion of the point mass in close proximity

with the primary could best be examined via the analytical solution

Without consideration of the remaining graphs Figs. 7-28) in detail,

we shall examine two additional points. The first of these is that in which the

combination of forces is such that a backward loop may be attained by the

particle. This effect is easily seen in Figure 11 by examining the point of

greatest extension of motion in the x direction.

Figures 27 and 28 illustrate a fairly interesting case. For an initially

circular orbit, as always, and z -1, an extremely close approach (0. 000005

unit) occurs during the first orbit. The exact value of A for which a collision

occurs during the first orbit could be determined by use of equation (73) if it

is of interest.
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CONCLUS IONS

It has been shown that orbital motion which involves combined Keplerian

! and planar force fields can be expressed analytically. The results are given
in the form of quadratures for general three-dimensional motion.

For the special case of two-dimensional motion and initially circular

orbits these integrals are evaluated in terms of elliptic functions. Numerical

results for these conditions are presented graphically. The varied results which

are due to variations in the ratio of field strengths indicate the generalized
form of the analytical results.

The analytical results derived above were not used to generate the

graphical results which are presented, due to the inadequacy of published
numerical tables in the area of elliptic functions. However, the treatment
of unusual behavior such as collisions and long term stability can be approached
much more easily via the analytic solution.

The above results are not necessarily directly applicable from the

physical point of view. However, they do form a basis for further work in

perturbation theory and for cases in which the combination of fields which

is assumed in this report is a sufficiently accurate model.

George C. Marshall Space Flight Center
National Aeronautics and Space Administration

Huntsville, Alabama, March 19, 1968

125-17-05-00-62
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APPEND IX

FURTHER CONS DERATIONS OF SEPARATION CONSTANT ^
Suppose that we consider the unperturbed two-body problem. Let the

position be described by a radius vector r The equations of motion for this

problem are

F ^ (A-l)
r"

so that

r x r’ 0

and

r x r L (A-2)

where L is a vectorial integration constant.

Consider, now, the result,

d / T \ r2 r" -"rAlt" r’) (,T ^ / ? ~^\! r / r x\r r)
dt\TF -----r3 r3 r3

(A-3)

Combining equations (A-2) and (A-3) gives

A. ( 1-\= -L^ (A-4)
dt \ r / r3
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Similarly, we compute

| -^ (T x L") ? x L’= ^
r

^
L

(A-5)

I Multiplying equation (A-4) by ^ and subtracting the result from (A-5) gives

d / 7 \ d ,-I ^ dT (<Tr dt
(r x L

yielding

^ \r x L ^(- /
w (A-6)

where W is a second vectorial integration constant.

It is instructive to identify W at this time. From (A-6)

r (r x L ^i r + r W.

But

7 (7 x r I^ (7 x7) L^ I!"= L2

so that

IJ. r + T W L2 (A-7)

Let ;/; be the angle between the vectors r and W so that

L2 r p. + w cos if))

which gives

^
r ---^---- (A-8)

1 +- cos ib
P-
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The expression for the radius in the two-body problem described by
spherical coordinate angles <p and 0 is 2]

^
a(l e2) (A-9)

1 + e cos 0 cos <p

Comparing equations (A-8) and (A-9) shows that

w lie (A-10)

where e is the eccentricity of the. orbit. In the .standard choice of coordinates

where perigee corresponds to ip 0 we find that W is a vector of magnitude

;ne pointing toward perigee.

Equation (A-6) now yields the z component of the vector W which, in

parabolic coordinates, ,,ri, (f> becomes

2fn / \
(^ "r?) P4> 1 2 ^ il

(w^ -m^T (p,2 P,2 )4- ^m^ L
i^ ^-^

Ihe right side of equation (A-11) can be seen to differ from the portion

of equation (51) which is in curly brackets only by a factor of m2. (Notice that

1 L if A 0. The identification of /3 is then complete. It is a modified form

of one component of Laplace’s integration constant just as E and 1 were,
respectively, modified forms of the energy and angular momentum.
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